Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

Пермский национальный исследовательский политехнический университет

УТВЕРЖ	ДАЮ		
Проректор	по уче	ебной раб	боте
Y/15	by	Н.В.Лоб	бов
" 07 » do	ррона	20	_

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Дисциплина: В	лина: Вычислительная гидрогазодинамика	
	(наименование)	
Форма обучения:	очная	
	(очная/очно-заочная/заочная)	
Уровень высшего образования:	магистратура	
	(бакалавриат/специалитет/магистратура)	
Общая трудоёмкость:	144 (4)	
	(часы (ЗЕ))	
Направление подготовки:	24.04.05 Двигатели летательных аппаратов	
	(код и наименование направления)	
Направленность: Аэродина	мика, гидродинамика и процессы теплообмена	
	двигателей летательных аппаратов	
	(наименование образовательной программы)	

1. Общие положения

1.1. Цели и задачи дисциплины

Цель учебной дисциплины – изучение основных методов и задач вычисли-тельной гидрогазодинамики и работы в программных комплексах для исследования процессов течений жидкости и газа.

Задачи дисциплины:

- изучение численных методов расчета течений жидкости и газа;
- освоение программы вычислительной динамики жидкости и газов для проведения газодинамических расчетов конструкции ракетных двигателей;
- формирование навыков владения персональным компьютером как инструментом для проведения расчетов элементов конструкции ракетных двигателей.

1.2. Изучаемые объекты дисциплины

- численные методы расчета задач газовой динамики применительно к конструкции ракетных двигателей;
- современные компьютерные программы для решения задач газовой динамики.

1.3. Входные требования

Не предусмотрены

2. Планируемые результаты обучения по дисциплине

Компетенция	Индекс индикатора	Планируемые результаты обучения по дисциплине (знать, уметь, владеть)	Индикатор достижения компетенции, с которым соотнесены планируемые результаты обучения	Средства оценки
ПК-1.1	ИД-1ПК-1.1	Знает основы использования современных компьютерных программ для моделирования газодинамических процессов в ракетных двигателях.	Знает теоретические основы рабочих процессов в ракетных двигателях.	Экзамен
ПК-1.1	ИД-2ПК-1.1	Умеет пользоваться современными вычислительными пакетами для моделирования газодинамических процессов в ракетных двигателях и их агрегатах		Курсовая работа

	Индекс	Планируемые результаты	Индикатор достижения компетенции, с которым	Средства
Компетенция	индикатора	обучения по дисциплине (знать, уметь, владеть)	соотнесены планируемые результаты обучения	оценки
ПК-1.1	ид-3ПК-1.1	Владеет навыками постановки проведения вычислений, анализа и обобщения результатов моделирования при проведении научно-исследовательских и опытно-конструкторских работ при проектировании ракетных двигателей.	Владеет навыками постановки исследовательских задач, планирования и проведения вычислений, анализа и обобщения результатов моделирования при проведении научноисследовательских и опытно-конструкторских работ при проектировании ракетных двигателей.	Курсовая работа
ПК-2.2	ИД-1ПК0-4	Знает методики и этапность проведения газодинамических расчётов в ракетных двигателях.	Знает методики и этапность проведения газодинамических, тепловых и прочностных расчётов процессов в ракетных двигателях.	Экзамен
ПК-2.2	ИД-2ПК0-4	Умеет проводить газодинамические расчёты ракетных двигателей и их элементов с использованием численных методов исследования.	Умеет проводить газодинамические, тепловые и прочностные расчёты двигателей летательных аппаратов и их элементов с использованием аналитических и численных методов исследования.	Курсовая работа
ПК-2.2	ид-3ПК0-4	Владеет навыками проведения газодинамических расчётов ракетных двигателей и их элементов с использованием численных методов исследования с применением современных программных средств и анализа полученных результатов для принятия технических решений.	двигателей и их элементов с использованием аналитических и численных	Курсовая работа

3. Объем и виды учебной работы

Вид учебной работы	Всего часов	Распределение по семестрам в часах Номер семестра 3
1. Проведение учебных занятий (включая проведение текущего контроля успеваемости) в форме: 1.1. Контактная аудиторная работа, из них:	45	45
- лекции (Л)	18	18
- лабораторные работы (ЛР)	25	25
- практические занятия, семинары и (или) другие виды занятий семинарского типа (ПЗ)		
- контроль самостоятельной работы (КСР)	2	2
- контрольная работа		
1.2. Самостоятельная работа студентов (СРС)	63	63
2. Промежуточная аттестация		
Экзамен	36	36
Дифференцированный зачет		
Зачет		
Курсовой проект (КП)		
Курсовая работа (КР)	18	18
Общая трудоемкость дисциплины	144	144

4. Содержание дисциплины

Наименование разделов дисциплины с кратким содержанием		ем аудито по видам		Объем внеаудиторных занятий по видам в часах
	Л	ЛР	П3	CPC
3-й семестр				

Решение основных уравнений вычислительной пазовой динамики в ANSYS FLUENT Тема 1. Введение в вычислительную газовую динамику Краткое введение в вычислительную азорогидродинамику: исторический обзор, примеры задач. Уравнения континуальной газовой динамики (Ойлера и Навье-Стокса), решаемые в програмыном накете ANSYS Fluent. Основные решатели ANSYS Fluent и области их применения. Тема 2. Основы решения задач вычислительной газовой динамики в ANSYS Fluent и области их применения. Тема 2. Основы решения задач вычислительной газовой динамики в ANSYS Fluent. Назначение, комплектация и основные возможности накета. Тины задач вычислительной газовой динамики в ANSYS Fluent. Назначение, комплектация и основные возможности накета. Тины задач вычислительной газовой динамики. Основные этапы решения задачи в ANSYS Fluent. Препроцессор, решатель и постпроцессор. Определение целей задач и области моделирования. Сравнение результатов численного моделирования с экспериментальными результатами. Тема 3. Подготовка геомегрических и сеточных моделей для работы в ANSYS FLUENT Методы построения двух- и трехмерных расчетных областей в ANSYS DesignModeler. Способы построения структурированных, неструктурированных условий в ANSYS DesignModeler. Способы построения структурированных условий в ANSYS DesignModeler. Способы построения структурированных условий в ANSYS DesignModeler/ANSYS Meshing. Работа с расчетной сеткой в решателе Fluent: импорт, проверка, локальное измельчение. Тема 4. Решение основных уравнений вычислительной газовой динамики в ANSYS FLUENT Основные методы численного решения уравнений пыродинамики и газовой динамики в ANSYS FLUENT Основные методы численного решения уравнений гидродинамики и газовой динамики и к применению. Сосенности ветоды консенных объемов в ANSYS Fluent. Математические модели, применяемые для расчета турбулентных течений жидкости и газов. Модели турбулентных течений жидкости и газов. Модели турбулентных течений жидкости и газов. Модели турбулентности, пременению Сосенными объемов даменения Навъ	Наименование разделов дисциплины с кратким содержанием	занятий	ем аудито	в часах	Объем внеаудиторных занятий по видам в часах
газовой динамики в ANSYS FLUENT Тема 1. Введение в вычислительную газовую динамику Краткое введение в вычислительную азрогидродинамику: исторический обзор, примеры задач. Уравнения континуальной газовой динамики (Ойлера и Навье-Стокса), решаемые в программном пакете ANSYS Fluent. Основные решатели ANSYS Fluent и области их применения. Тема 2. Основы решения задач вычислительной газовой динамики в ANSYS FLUENT Введение в методологию вычислительной газовой динамики в ANSYS FLUENT Введение в методологию вычислительной газовой динамики в ANSYS Fluent. Назначение, комплектация и основные возможности пакета. Типы задач вычислительной газовой динамики. Основные этапы решения задач в вычислительной газовой динамики. Основные этапы решения задачи в ANSYS Fluent. Препроцессор, решатель и посттироцессор. Определение целей задач и области моделирования с экспериментальными результатами. Тема 3. Подготовка геометрических и сеточных моделей для работы в ANSYS FLUENT Методы построения двух - и трехмерных расчетных областей в ANSYS EsignModeler. Способы построения структурированных, неструктурированных и гибридных сеток в ANSYS Meshing для проведения численного моделирования. Определение граничных условий в ANSYS Везівпм для проведения численного моделирования. Определение граничных условий в ANSYS Везівпм для проведение и информациями в ANSYS Вычислительной газовой динамики в ANSYS Безівпм вешение зазовой динамики в ANSYS Безівпм ветоды численного решения уравнений вычислительной газовой динамики в ANSYS FLUENT Основные методы численного решения уравнений гидродинамики и газовой динамики. Особенности метода конечных объемов в ANSYS Fluent. Математические модели, применяемые для расчета турбулентных течений жидкости и газов. Модели турбулентных течений жидкости и газов. Модели турбулентности, и рекомендации к их применению.					
краткое введение в вычислительную аэрогидродинамику: исторический обзор, примеры задач. Уравнения континуальной газовой динамики (Эйлера и Навы-Стокса), решаемые в программиюм пакете ANSYS Fluent. Основные решатели ANSYS Fluent и области их применения. Тема 2. Основы решения задач вычислительной газовой динамики в ANSYS FLUENT Введение в методологию вычислительной газовой динамики в ANSYS FLUENT Введение в методологию вычислительной газовой динамики. Основные принципы решения задач вычислительной газовой динамики в ANSYS Fluent. Назначение, комплектация и основные возможности пакета. Типы задач вычислительной газовой динамики. Основные этапы решения задач в ANSYS Fluent. Препроцессор, определение целей задач и области моделирования. Сравнение результатов численного моделирования с экспериментальными результатами. Тема 3. Подготовка геометрических и сеточных моделей для работы в ANSYS FLUENT Методы построения двух - и трехмерных расчетных областей в ANSYS DesignModeler. Способы построения двух тупурированных, неструктурированных и гибридных сеток в ANSYS Meshing для проведения численного моделирования. Определение граничных условий в ANSYS DesignModeler/ANSYS Meshing. Работа с расчетной сеткой в решателе Fluent: импорт, проверка, локальное измельчение. Тема 4. Решение основных уравнений вычислительной газовой динамики в ANSYS FLUENT Основные метода конечных объемов в ANSYS Fluent. Математические модели, применяемые для расчета турбулентных течений жидкости и газов. Модели турбулентности, и рекомендации к их применению.		9	12	0	32
Краткое введение в вычислительную аэрогидродинамику: исторический обзор, примеры задач, Уравнения континуальной газовой динамики (Эйлера и Навье-Стокса), решаемые в программном пакете ANSYS Fluent. Основные решатели ANSYS Fluent и области их применения. Тема 2. Основы решения задач вычислительной газовой динамики в ANSYS FLUENT Введение в методологию вычислительной газовой динамики в ANSYS Fluent. Назначение, комплектация и основные возможности накета. Типы задач вычислительной газовой динамики. Основные принципы решения задач вычислительной газовой динамики. Основные возможности накета. Типы задач вычислительной газовой динамики. Основные этапы решения задач и в ANSYS Fluent. Препроцессор, решатель и постпроцессор. Определение целей задач и области моделирования. Сравнение результатов численного моделирования с экспериментальными результатами. Тема 3. Подготовка геометрических и сеточных моделей для работы в ANSYS FLUENT Методы построения двух- и трехмерных расчетных областей в ANSYS DesignModeler. Способы построения структурированных, и гибридных сеток в ANSYS Meshing для проведения численного моделирования. Определение граничных условий в ANSYS DesignModeler. АNSYS Мезыпд. Работа с расчетной сеткой в решателе Fluent: импорт, проверка, локальное измельчение. Тема 4. Решение основных уравнений вычислительной газовой динамики в ANSYS FLUENT Основные методы численного решения уравнений гидродинамики и газовой динамики. Особенности метода конечных объемов в ANSYS Fluent. Математические модели, применяемые для расчета турбулентных течений жидкости и газов. Модели турбулентности, и рекомендации к их применению.					
аэрогидродинамику: исторический обзор, примеры задач. Уравнения континульной газовой динамики (Ойлера и Навые-Стокса), решаемые в програмиюм пакете ANSYS Fluent. Основные решатели ANSYS Fluent и области их применения. Тема 2. Основы решения задач вычислительной газовой динамики в ANSYS FLUENT Введение в методологию вычислительной газовой динамики. Основные принципы решения задач вычислительной газовой динамики в ANSYS Fluent. Назначение, комплектация и основные возможности пакета. Типы задач вычислительной газовой динамики. Основные этапы решения задач и в ANSYS Fluent. Препроцессор, решатель и постпроцессор. Определение целей задач и области моделирования. Сравнение результатов численного моделирования с экспериментальными результатами. Тема 3. Подтотовка геометрических и сеточных моделей для работы в ANSYS FLUENT Методы построения двух- и трехмерных расчетных областей в ANSYS DesignModeler. Способы построения структурированных, и гибридных сеток в ANSYS меshing для проведения численного моделирования. Определение граничных условий в ANSYS DesignModeler/ANSYS Meshing. Работа с расчетной сеткой в решателе Fluent: импорт, проверка, покальное измельчение. Тема 4. Решение основных уравнений вычислительной газовой динамики в ANSYS FLUENT Основные методы численного решения уравнений гольные методы численного решения уравнений гольными и газовой динамики. Особенности метода конечных объемов в ANSYS Fluent. Математические модели, применяемые для расчета турбулентных течений жидкости и газов. Модели гурбулентных течений жидкости и газов. Модели гурбулентности, и рекомендации к их примененнов.					
Введение в методологию вычислительной газовой динамики. Основные принципы решения задач вычислительной газовой динамики в ANSYS Fluent. Назначение, комплектация и основные возможности пакета. Типы задач вычислительной газовой динамики. Основные этапы решения задачи в ANSYS Fluent. Препроцессор, решатель и постпроцессор. Определение целей задач и области моделирования. Сравнение результатов численного моделирования с экспериментальными результатами. Тема 3. Подготовка геометрических и сеточных моделей для работы в ANSYS FLUENT Методы построения двух- и трехмерных расчетных областей в ANSYS DesignModeler. Способы построения структурированных, неструктурированных и гибридных сеток в ANSYS Meshing для проведения численного моделирования. Определение граничных условий в ANSYS DesignModeler/ANSYS Meshing. Работа с расчетной сеткой в решателе Fluent: импорт, проверка, локальное измельчение. Тема 4. Решение основных уравнений вычислительной газовой динамики в ANSYS FLUENT Основные методы численного решения уравнений гидродинамики и газовой динамики. Особенности метода конечных объемов в ANSYS Fluent. Математические модели, применяемые для расчета турбулентных течений жидкости и газов. Модели	аэрогидродинамику: исторический обзор, примеры задач. Уравнения континуальной газовой динамики (Эйлера и Навье-Стокса), решаемые в программном пакете ANSYS Fluent. Основные решатели ANSYS Fluent и области их применения. Тема 2. Основы решения задач вычислительной				
динамики. Основные принципы решения задач вычислительной газовой динамики в ANSYS Fluent. Назначение, комплектация и основные возможности пакета. Типы задач вычислительной газовой динамики. Основные этапы решения задачи в ANSYS Fluent. Препроцессор, решатель и постпроцессор. Определение целей задач и области моделирования. Сравнение результатов численного моделирования с экспериментальными результатами. Тема 3. Подготовка геометрических и сеточных моделей для работы в ANSYS FLUENT Методы построения двух- и трехмерных расчетных областей в ANSYS DesignModeler. Способы построения структурированных, неструктурированных и гибридных сеток в ANSYS Meshing для проведения численного моделирования. Определение граничных условий в ANSYS DesignModeler/ANSYS Meshing. Работа с расчетной сеткой в решателе Fluent: импорт, проверка, локальное измельчение. Тема 4. Решение основных уравнений вычислительной газовой динамики в ANSYS FLUENT Основные методы численного решения уравнений гидродинамики и газовой динамики. Особенности метода конечных объемов в ANSYS Fluent. Математические модели, применяемые для расчета турбулентных течений жидкости и газов. Модели					
DesignModeler/ANSYS Meshing. Работа с расчетной сеткой в решателе Fluent: импорт, проверка, локальное измельчение. Тема 4. Решение основных уравнений вычислительной газовой динамики в ANSYS FLUENT Основные методы численного решения уравнений гидродинамики и газовой динамики. Особенности метода конечных объемов в ANSYS Fluent. Математические модели, применяемые для расчета турбулентных течений жидкости и газов. Модели турбулентности, и рекомендации к их применению.	динамики. Основные принципы решения задач вычислительной газовой динамики в ANSYS Fluent. Назначение, комплектация и основные возможности пакета. Типы задач вычислительной газовой динамики. Основные этапы решения задачи в ANSYS Fluent. Препроцессор, решатель и постпроцессор. Определение целей задач и области моделирования. Сравнение результатов численного моделирования с экспериментальными результатами. Тема 3. Подготовка геометрических и сеточных моделей для работы в ANSYS FLUENT Методы построения двух- и трехмерных расчетных областей в ANSYS DesignModeler. Способы построения структурированных, неструктурированных и гибридных сеток в ANSYS Meshing для проведения численного моделирования.				
вычислительной газовой динамики в ANSYS FLUENT Основные методы численного решения уравнений гидродинамики и газовой динамики. Особенности метода конечных объемов в ANSYS Fluent. Математические модели, применяемые для расчета турбулентных течений жидкости и газов. Модели турбулентности, и рекомендации к их применению.	DesignModeler/ANSYS Meshing. Работа с расчетной сеткой в решателе Fluent: импорт, проверка, локальное измельчение.				
гидродинамики и газовой динамики. Особенности метода конечных объемов в ANSYS Fluent. Математические модели, применяемые для расчета турбулентных течений жидкости и газов. Модели турбулентности, и рекомендации к их применению.	вычислительной газовой динамики в ANSYS				
и RANS модели турбулентности. Вихреразрешающее моделирование.	Основные методы численного решения уравнений гидродинамики и газовой динамики. Особенности метода конечных объемов в ANSYS Fluent. Математические модели, применяемые для расчета турбулентных течений жидкости и газов. Модели турбулентности, и рекомендации к их применению. Осредненные по Рейнольдсу уравнения Навье-Стокса и RANS модели турбулентности. Вихреразрешающее моделирование.				
Основы подготовки расчета в ANSYS FLUENT и 9 13 0 31 постпроцессинг результатов Тама 5. Основня подготовки расчета в ANSYS	постпроцессинг результатов	9	13	0	31
Тема 5. Основы подготовки расчета в ANSYS FLUENT Обзор интерфейса ANSYS FLUENT.	FLUENT				

Наименование разделов дисциплины с кратким содержанием		в часах	Объем внеаудиторных занятий по видам в часах	
	Л	ЛР	П3	CPC
Поддерживаемые форматы сеток. Определение свойств материалов. Домены жидкости, пористых материалов и твердых тел. Многокомпонентные и многофазные потоки. Моделирование потоков с учетом сжимаемости. Граничные и начальные условия. Рекомендации использования граничных условий. Настройки решателя. Выбор физических моделей. Выбор решателя, использование явных и неявных схем. Стационарные и нестационарные задачи. Критерии сходимости решения уравнений. Невязки, дисбалансы и контрольные точки. Запуск расчета. Тема 6. Постпроцессинг. Расчет интегральных характеристик, графическая визуализация расчетных данных Создание дополнительных функций. Создание дополнительных точек, линий и сечений в расчетной области. Определение интегральных характеристик. Анимация. Адаптация сетки. Критерии для адаптации. Дополнительные модули пользователя (UDF). Тема 7. Типичные задачи механики жидкости и газа Внешние течения. Обтекание тел. Обтекание цилиндра потоком вязкой несжимаемой жидкости. Моделирование внешнего сжимаемого течения. Моделирование периодического течения и теплопереноса. Нестационарные задачи. Расчет турбулентного течения.				
ИТОГО по 3-му семестру	18	25	0	63
ИТОГО по дисциплине	18	25	0	63

Тематика примерных лабораторных работ

№ п.п.	Наименование темы лабораторной работы
1	Течение несжимаемой жидкости в изогнутой трубе с несколькими входными каналами
2	Численное моделирование стационарного обтекания профиля крыла
3	Расчет течения сверхзвуковой струи
4	Расчет нестационарного движения потока в двумерном сопле
5	Моделирование периодического отрывного течения за цилиндром
6	Расчет ротор-статор взаимодействия

Тематика примерных курсовых проектов/работ

№ п.п.	Наименование темы курсовых проектов/работ
1	Исследование внутрикамерных течений в РДТТ
2	Исследование сверхзвуковых течений в сопле ракетного двигателя
3	Численное моделирование обтекания газового руля сверхзвуковым потоком

5. Организационно-педагогические условия

5.1. Образовательные технологии, используемые для формирования компетенций

Проведение лекционных занятий по дисциплине основывается на активном методе обучения, при которой учащиеся не пассивные слушатели, а активные участники занятия, отвечающие на вопросы преподавателя. Вопросы преподавателя нацелены на активизацию процессов усвоения материала, а также на развитие логического мышления. Преподаватель заранее намечает список вопросов, стимулирующих ассоциативное мышление и установления связей с ранее освоенным материалом.

Проведение лабораторных занятий основывается на интерактивном методе обучения, при котором обучающиеся взаимодействуют не только с преподавателем, но и друг с другом. При этом доминирует активность учащихся в процессе обучения. Место преподавателя в интерактивных занятиях сводится к направлению деятельности обучающихся на достижение целей занятия.

При проведении учебных занятий используются интерактивные лекции, групповые дискуссии, ролевые игры, тренинги и анализ ситуаций и имитационных моделей.

5.2. Методические указания для обучающихся по изучению дисциплины

При изучении дисциплины обучающимся целесообразно выполнять следующие рекомендации:

- 1. Изучение учебной дисциплины должно вестись систематически.
- 2. После изучения какого-либо раздела по учебнику или конспектным материалам рекомендуется по памяти воспроизвести основные термины, определения, понятия раздела.
- 3. Особое внимание следует уделить выполнению отчетов лабораторным работам и индивидуальным комплексным заданиям на самостоятельную работу.
- 4. Вся тематика вопросов, изучаемых самостоятельно, задается на лекциях преподавателем. Им же даются источники (в первую очередь вновь изданные в периодической научной литературе) для более детального понимания вопросов, озвученных на лекции.

6. Перечень учебно-методического и информационного обеспечения для самостоятельной работы обучающихся по дисциплине

6.1. Печатная учебно-методическая литература

	Библиографическое описание				
№ п/п (автор, заглавие, вид издания, место, издательство, экзем					
	год издания, количество страниц)	библиотеке			
1. Основная литература					

1	Введение в математическое моделирование: учебное пособие / В. Н. Ашихмин [и др.] М: Логос, 2007.	37
2	Основные положения и общие методы / Под ред. В. П. Шидловского Москва: , Мир, 1991 (Вычислительные методы в динамике жидкостей : в 2 т. : пер. с англ.; Т. 1).	13
	2. Дополнительная литература	
	2.1. Учебные и научные издания	
1	Краснов М. В. Unigraphics для профессионалов / М. В. Краснов, Ю. В. Чигишев Москва: Лори, 2004.	4
2	Попов Д. Н. Гидромеханика: учебник для вузов / Д. Н. Попов, С. С. Панаиотти, М. В. Рябинин Москва: Изд-во МГТУ им. Н. Э. Баумана, 2002.	76
3	Самарский А.А. Математическое моделирование: Идеи. Методы. Примеры / А.А. Самарский, А.П. Михайлов М.: Физматлит, 2005.	14
4	Фрик П. Г. Турбулентность: подходы и модели / П.Г. Фрик М. Ижевск: Ин-т компьют. исслед., 2003.	63
	2.2. Периодические издания	
	Не используется	
	2.3. Нормативно-технические издания	
	Не используется	
	3. Методические указания для студентов по освоению дисципли	іны
	Не используется	
	4. Учебно-методическое обеспечение самостоятельной работы сту	дента
	Не используется	

6.2. Электронная учебно-методическая литература

Вид литературы	Наименование разработки	Ссылка на информационный ресурс	Доступность (сеть Интернет / локальная сеть; авторизованный / свободный доступ)
	Введение в математическое моделирование: учебное пособие для вузов / В. Н. Ашихмин [и др.].		авторизованный
	для вузов / Б. п. Ашихмин [и др.].		доступ

6.3. Лицензионное и свободно распространяемое программное обеспечение, используемое при осуществлении образовательного процесса по дисциплине

Вид ПО	Наименование ПО	
Операционные системы	Windows 10 (подп. Azure Dev Tools for Teaching)	
Офисные приложения.	Microsoft Office Professional 2007. лиц. 42661567	
Прикладное программное обеспечение общего назначения	Dr.Web Enterprise Security Suite, 3000 лиц, ПНИПУ ОЦНИТ 2017	

Вид ПО	Наименование ПО
Системы управления проектами, исследованиями, разработкой, проектированием, моделированием и	ANSYS (лиц. 1062978)
внедрением	

6.4. Современные профессиональные базы данных и информационные справочные системы, используемые при осуществлении образовательного процесса по дисциплине

Наименование	Ссылка на информационный ресурс
Научная библиотека Пермского национального	http://lib.pstu.ru/
исследовательского политехнического университета	
Электронно-библиотечеая система Лань	https://e.lanbook.com/
Электронно-библиотечная система IPRbooks	http://www.iprbookshop.ru/
Информационные ресурсы Сети КонсультантПлюс	http://www.consultant.ru/

7. Материально-техническое обеспечение образовательного процесса по дисциплине

Вид занятий	Наименование необходимого основного оборудования и технических средств обучения	Количество единиц
Курсовая работа	Компьютеры	12
	Компьютеры	12
работа		
Лекция	Компьютер	1
Лекция	Проектор	1

8. Фонд оценочных средств дисциплины

Описан в отдельном документе	
------------------------------	--